Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7485397

(JIA-2017-1641) GmNMH7, a MADS-box transcription factor, inhibits root development and nodulation of soybean (Glycine max [L.] Merr.)
Saturday, 2018/06/23 | 08:27:54

MA Wen-ya, LIU Wei, HOU Wen-shen, SUN Shi, JIANG Bing-jun, HAN Tian-fu, FENG Yong-jun, WU Cun-xiang

Journal of Integrative Agriculture online: 2018-JUNE-13

Abstract

As an important food crop and oil crop, soybean (Glycine max [L.] Merr.) is capable of nitrogen-fixing by root nodule.  Previous studies showed that GmNMH7, a transcription factor of MADS-box family, is associated with nodule development, but its specific function remained unknown.  In this study, we found that GmNMH7 was specifically expressed in root and nodule and the expression pattern of GmNMH7 was similar to several genes involved in early development of nodule (GmENOD40-1GmENOD40-2GmNFR1aGmNFR5a, and GmNIN) after rhizobia inoculation.  The earlier expression peak of GmNMH7 compared to the other genes (GmENOD40-1GmENOD40-2, GmNFR1aGmNFR5a, and GmNIN) indicated that the gene is related to the NF (nod factor) signaling pathway and functions at the early development of nodule.  Over-expression of GmNMH7 in hairy roots significantly reduced the nodule number and the root length.  In the transgenic hairy roots, over-expression of GmNMH7 significantly down-regulated the expression levels of GmENOD40-1, GmENOD40-2, and GmNFR5α.  Moreover, the expression of GmNMH7 could respond to abscisic acid (ABA) and gibberellin (GA3) treatment in the root of Zigongdongdou seedlings.  Over-expressing GmNMH7gene reduced the content of ABA, and increased the content of GA3 in the positive transgenic hairy roots.  Therefore, we concluded that GmNMH7 might participate in the NF signaling pathway and negatively regulate nodulation probably through regulating the content of GA3.

 

See http://www.chinaagrisci.com/Jwk_zgnykxen/EN/10.1016/S2095-3119(18)61992-6

Back      Print      View: 281

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD